|
INDUSTRY INFORMATION 液相样品离散化是进行生物、化学分析或者微纳米材料合成、药物颗粒制备等应用的关键步骤,可通过离散化技术将液相样本离散成为大量均匀并独立的微液滴(pL-fL)。
2022-06-17
近期,为了更好的利用单细胞蛋白质组学技术,揭示生物过程中的细胞表型异质性和细胞特异性功能网络,台湾中央研究院化学研究所及台湾大学化学系的研究人员提出了一种简化的工作流程,即将微流控芯片用于一体化蛋白质组样品制备和数据独立采集(DIA)质谱(MS),并将该手段拓展到单细胞水平,从而为单细胞蛋白质组学的应用奠定基础。
2022-06-16
往年,The Scientist 杂志评选的十大创新科技产品主要来自于实验室,这些技术往往是探索基础生物学的最新工具。但是 2020 年 COVID-19 的大爆发导致大量生物学家将目光转向 SARS-CoV-2 病毒,因此,今年 The Scientist 杂志的评选结果中纳入了多项旨在解决 COVID-19 的技术。
2022-06-10
可穿戴设备集成电化学传感平台在生物医学应用中具有广阔的前景。然而,传统的电化学平台通常构建于印刷电路板(PCB),在柔韧性和透气性方面都比较差,并且缺乏延展性。而室温下的液态金属具有出色的流动性和导电性,在柔性电子产品领域显示出良好的应用前景。
2022-05-30
从复杂生物样本中高效分离小细胞外囊泡(sEV,30-200nm)是对其进行精准分析与临床应用的重要前提。然而,sEV的小尺寸和低浮力密度对其分离技术提出了重大挑战,目前缺乏高效统一的方法实现sEV的高纯度提取。近年来,微流控技术在生物样品处理中显示出巨大的潜力,具有传统技术难以企及的优势,基于微流控技术的sEV分离方法也得到了迅速发展。
2022-05-27
由新型冠状病毒(SARS-CoV-2)引起的新冠肺炎(COVID-19)对人类生命构成了重大的威胁。虽然动物模型和单层细胞培养被用于发病机制研究和疾病疗法的开发,但仍然缺乏能够更准确反映人类对这种新型冠状病毒相关反应的模型。干细胞类器官和器官芯片已成为构建仿生体外三维(3D)组织或器官模型的两种前沿技术。中国科学院大连化学物理研究所秦建华课题组以“Human Organoids and Or...
2022-05-25
预测个体对肿瘤药物的响应有助于指导治疗决策和提高肿瘤患者生存率。目前,虽然肿瘤病理学、组织学和分子图谱正被整合到个性化医疗中,以指导治疗决策。
2022-05-20
5月10日,发改委印发《“十四五”生物经济发展规划》提出,开展前沿生物技术创新。加快发展高通量基因测序技术,推动以单分子测序为标志的新一代测序技术创新,不断提高基因测序效率、降低测序成本。
2022-05-10
|